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Weakly Supervised Semantic Segmentation for
Joint Key Local Structure Localization and

Classification of Aurora Image
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Abstract— In this paper, we propose a novel weakly supervised
semantic segmentation (WSSS) method that uses image tags
as supervision to achieve joint pixel-level localization of the
key local structure (KLS) and image-level classification of the
aurora images captured by the ground-based optical all-sky
imager. First, a patch-scale model (PSM) based on the small-
scale structure of aurora is designed to identify the type-specific
regions for each training image. Second, a region-scale model
is trained with the identified type-specific regions to coarsely
localize the KLS from multiple sizes of field of view, based on
which the aurora image is classified. Finally, given the predicted
image type, the PSM further refines the KLS in a pixel level.
By localizing KLS from coarse to fine, the proposed method
captures both overall shape with a bottom–up processing and
local structure details of aurora in a top–down manner. Extensive
experiments on the expert labeled data sets have demonstrated
the efficacy of the proposed method in benchmarking with the
state-of-the-art WSSS methods.

Index Terms— Aurora image analysis, bag of visual words
(BoVW), convolutional neural networks (CNNs), weakly super-
vised semantic segmentation (WSSS).

I. INTRODUCTION

AURORA borealis and aurora australis, often called the
northern lights and southern lights, are spectacular phe-

nomena that appear around the high latitude area of the earth.
The light is emitted by atmospheric atoms and molecules that
have been excited by collisions with electrons and protons
that precipitate into the atmosphere from the outer space [1].
As an optically thin projection screen reflecting the solar
activities and changes in the earth’s magnetosphere, aurora
is an important way to monitor and investigate the physical
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processes in the near-earth space for geosciences. Of various
facilities for aurora observation, the ground-based optical all-
sky imager (ASI) captures 2-D morphological information
with satisfactory spatial and temporal resolutions [2]. How-
ever, with the dramatically and ceaselessly increasing amount
of ASI images, how to efficiently analyze such huge data set
faces enormous challenges. The traditional analysis of ASI
images via human visual inspection is usually performed on a
small number of images, and the corresponding analysis results
are difficult to reproduce due to the tedious work burden.

Since the morphological types of aurora have turned out
to be correlated with specific magnetospheric regimes and
dynamic activity [3] and influenced by the solar wind para-
meters [4], many computer vision and machine learning tech-
niques have been developed to assist aurora research over the
past few decades, such as, ASI aurora image retrieval [1], [5],
[6], ASI aurora image classification [7]–[11], and ASI aurora
image segmentation [12], [13]. Particularly, an automatic
classification of ASI aurora images on a large data set can
help scientists to study the relationship between morphological
types and physical processes of aurora. In return, scientists can
construct specific model to forecast solar activities by automat-
ically analyzing the morphological types of aurora images,
and thus, some disastrous space weather caused by strong
disturbance in the magnetosphere (e.g., the magnetospheric
substorm which seriously interferes the communication, elec-
tricity supply, aviation, and global positioning system) can be
avoided [6].

In this paper, two essential problems in an ASI aurora image
analysis are considered: classification of the global morphol-
ogy of aurora and localization of the key local structure (KLS)
in the ASI aurora images. Specifically, the aurora classification
corresponds to a basic image classification problem, which
assigns a predefined aurora type to an image. In general,
the existing aurora classification methods predict the aurora
types from the whole image features [6], [10], [11]. How-
ever, the complex, nonrigid deformable spatial structure, and
fast temporal morphological evolution of aurora make the
classification of aurora image a challenging task, especially
for the fine-grained classification, e.g., further classifying the
corona type [14] into the subtypes of drapery, radial, and hot
spot (HS) [2]. As shown in Fig. 1, drapery, radial, and hotspot
aurora share some similar ray structures. The differences
among these ray structures mainly lie in two aspects: local
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Fig. 1. Typical types of ASI aurora images. (Top row) From left to right: arc,
drapery, radial, and HS. (Bottom row) Corresponding small patches of each
type randomly selected from the labeled data sets.

details and overall arrangements, which should be analyzed
with both the small and large size of field of view (FOV).

Actually, when aurora experts annotate the aurora images,
they tend to first localize the KLSs of particular aurora type in
the different sizes of FOV and then classify the aurora image
based on these KLSs. Motivated by this observation, we put
our focus on the joint KLS localization and classification of
the aurora image. We refer the mask that determines a certain
type of aurora as the KLS of this aurora type. It should be
noted that the KLS localization differs from the aurora image
segmentation [13] that aims to segment all aurora pixels from
the dark sky, while the KLS localization aims to identify
all the pixels belonging to each type. The KLS localization
can not only help identify the aurora image types but also
obtain the scale information of type-specific structures to
calculate the proportion of the aurora region to sky, which
is a significant cue for describing the scale of aurora [13].
Moreover, it can also provide the position information to
statistically analyze both the spatial and the morphological
evolution of aurora [2], [15].

For the purpose of the KLS localization, every pixel of the
ASI aurora image will be classified into predefined aurora
types. This is the same as the semantic segmentation task in
the computer vision. Particularly, the state-of-the-art semantic
segmentation methods based on fully convolutional networks
(FCNs) [16] require massive pixel-level annotations. However,
it is of great difficulty to obtain large amounts of pixel-
level annotated aurora images, since the aurora is transparent
and the shape boundaries of aurora structures are difficult
to deal with [13]. In addition, the fully supervised semantic
segmentation methods hardly scale to more morphological
types of aurora. To tackle this problem, we explore the weakly
supervised semantic segmentation (WSSS) method that only
requires easily obtained image-level tags. In the state-of-the-
art WSSS methods, there exist two main components.

1) Discovering the local semantic regions or their latent
information related to the image-level labels. Various of
methods were proposed, including cross-image contex-
tual analysis [17], saliency object detection models [18],
sparse learning models [19], conditioned random field
models [20], and convolutional neural network (CNN)-
based methods [21], [22].

2) Training the semantic segmentation models, such as
FCN, using the above-obtained information.

However, most of the existing WSSS methods can hardly
apply to aurora images due to the unique characteristics of
aurora morphology. First, the spatial size of the emission area
is a key factor of aurora morphology. The large-scale variation
of aurora structures will change the morphological type. For
example, the large scale of bright bands is the main component
of arc-type aurora, while the small scale of bright bands
usually appears in other types of aurora images. However,
the existing methods for a natural image analysis usually
assume that the objects in different images sharing a similar
appearance belong to the same category irrespective of their
scale changes. Second, the differences among various types
of aurora are subtle, especially for the ray structures. Without
a lot of accurate pixel-level annotations in the WSSS setting,
the FCN is inferior to distinguish such subtle differences (see
Section IV-E).

Considering the unique characteristics of aurora, we develop
a patch-scale model (PSM) and a region-scale model (RSM)
for analyzing the low-level detail features and high-level
overall arrangement features, respectively. The PSM and RSM
together achieve joint KLS localization and aurora image
classification. According to the scale characteristic of aurora,
the PSM is designed to estimate whether a fixed-size patch
is specific to a given aurora type, which agrees to the top–
down processing in recognition [23]. Specifically, we assume
that the fixed-size patches, which represent the small-scale
structure details, are discriminable among different types to
some extent (see Fig. 1). On one hand, it is of great difficulty
to classify these small patches into different morphological
types due to the existence of common small-scale structures in
different types of aurora images. On the other hand, if the type
of an aurora image is known, we can determine the specific
small-scale structures for each type and the common structures
between one type and the rest. Thus, the PSM can discover
the type-specific local regions of each training image with
a label. Subsequently, an RSM is trained with the semantic
regions generated by the PSM to detect each type of regions
using bounding boxes from different sizes of FOV, which
is regarded as the coarse localization of KLS. The aurora
image is classified into the type with the maximum area of
coarsely detected KLS. Note that in this paper, we classify
an aurora image to a single type only as in [10], but it
is possible to extend the proposed method to the multilabel
classification. Given the predicted type of an aurora image,
the PSM is further used to refine the KLS in the pixel
level by identifying the type-specific small-scale structure
details. Extensive experiments demonstrate the effectiveness
of the proposed method in terms of both classification and
segmentation.

The main contributions of this paper are summarized as
follows.

1) We propose a novel WSSS framework for joint pixel-
level KLS localization and classification of the ASI
aurora images according to the unique characteristics of
the aurora, which can help to analyze the huge aurora
image data sets.
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2) We design a PSM to discover the type-specific local
regions of aurora images with the image-level labels
which is a key component in WSSS methods.

3) Motivated by the image annotation process of experts,
the proposed method classifies the aurora images based
on the KLSs from multiple sizes of FOV, which capture
both local structures and overall shape of the aurora. The
classification accuracy of the aurora image is obviously
improved.

4) We propose a coarse-to-fine process for KLS localiza-
tion, which can distinguish the subtle differences among
various types of aurora. More specifically, the coarse
localization is determined by the overall arrangements
from multiple sizes of FOV with a bottom–up process-
ing, and the fine localization is achieved by identifying
the type-specific small-scale structure details in a top–
down manner.

5) Extensive experiments are carried out to validate the
effectiveness of the proposed methodology compared
with the existing approaches, which suggests the poten-
tial application value of our method to the automatic
analysis of large-scale aurora images.

The rest of this paper is organized as follows. Section II
gives a brief review of the related work. Section III presents
the proposed WSSS method for joint key local structure
localization and aurora image classification. The experimental
results and discussion are presented in Section IV. Finally,
Section V concludes this paper.

II. RELATED WORK

In this section, we first review the automatic methods
for ASI aurora images, including retrieval, classification, and
segmentation, and then introduce the most related CNN-based
WSSS methods using image-level annotations. It is noted
that there are many other methods, such as auroral oval
segmentation [24]–[28] and aurora event detection [29], are
developed for the satellite-based aurora images captured by the
ultraviolet imager. Considering the relevance to the proposed
algorithm, this section focuses on the methods for ASI images
only.

A. Automatic Analysis Methods for ASI Aurora Images

1) Retrieval: Image retrieval is to search a set of images
that have most similar appearance to a given query image
from a large-scale database, which is a basic technique for
analyzing the morphological characteristics of ASI aurora
images. Syrjäsuo et al. [1], [5], [9] have used the shape
information to represent aurora images and developed the first
search engine for ASI aurora image data sets. Since then,
researchers have been designing representation methods for
ASI aurora images to improve the retrieval performance. Con-
sidering that similar patterns may have different shapes and not
all aurora structures have typical extractable contours (e.g.,
corona aurora), the shape information alone is insufficient for
representation. Accordingly, some texture description methods
were proposed to represent aurora images. Specifically, in [9],
the gray-level aura matrices (GLAM) [30] was used to extract

the texture features of aurora. However, the GLAM only
provides the global information without much local cues, and
is sensitive to spatial scale, orientation, and intensity variation.
In the past years, the local binary pattern (LBP) [31] and
its variants have shown a great ability to describe the local
textures for ASI aurora images. Wang et al. [10] applied
an LBP descriptor to aurora images combined with a del-
icately designed block partition scheme and achieved both
global shape and local texture representations. According to
the characteristic of ASI, Yang et al. [6] presented a polar
embedding method by combining the scale-invariant feature
transform (SIFT) [32] and deep LBP features to represent an
aurora image, and a large-scale aurora image retrieval system
was developed based on the bag-of-visual-words (BoVW)
model.

2) Classification: Classification aims to assign a predefined
aurora type to each ASI image in the interesting data sets.
Similarly, all representation methods for ASI aurora image
retrieval can be applied to the classification problem by
training a classifier, such as support vector machines [9] and
k-nearest neighbors (kNNs) [10]. In addition, Syrjäsuo and
Partamies [11] evaluated the selection of numeric image fea-
tures, including simple intensity features, texture features, and
brightness-invariant features, for the task of aurora detection,
which can be regarded as a binary classification problem. They
found that the local methods perform better than global ones,
and simple intensity features, such as mean, minimum, and
maximum intensity, are most accurate when the training and
testing sets have the same brightness range for determining
the existence of aurora in an ASI image. In recent years,
CNN-based methods have become the de facto technique to
the pattern recognition problems in the computer vision due
to its great representation learning ability. Han et al. [33]
have trained the CNN models to classify the ASI aurora
images. Comparing with the traditional CNN models (e.g.,
AlexNet [34]), the classification accuracy of their method
is improved on two aspects: pretraining the first layer of a
multisize kernels CNN with eye movement annotations and
fine-tuning a three-stream CNN with image-level labels to
capture different receptive fields. However, obtaining the eye
movement annotation is extremely expensive and it is hard to
expand to large data sets or many other aurora types. Apart
from the static ASI image classification, Yang et al. [35]
and Zhang et al. [36] also explored the ASI aurora image
sequence classification by taking dynamic information into
consideration.

3) Segmentation: ASI aurora image segmentation is to
segment all aurora structures from dark sky, which is a pixel-
level binary classification problem. In order to segment the ray
structures, Fu et al. [12] proposed an adaptive LBP (ALBP)
descriptor to extract the ASI image features and a block
threshold strategy to estimate the aurora region. Furthermore,
Gao et al. [13] proposed an ASI image segmentation algorithm
with two parts: a texture part based on the ALBP features to
segment ray structures and a patch part based on the modified
Otsu method to segment bright patch structures. They assumed
that the aurora image is coarsely composed of patch and
texture parts.
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Fig. 2. Pipeline of the proposed method.

Motivated by the analysis process of aurora experts for
ASI images, our proposed algorithm is to achieve the joint
KLS localization and classification of an aurora image. This
challenging task can be regarded as the combination of classifi-
cation and segmentation, but not the simple cascading process
that classification followed by segmentation. The proposed
algorithm predicts the aurora type of an ASI image by coarsely
localizing KLSs. It significantly improves the classification
accuracy compared with the strong baseline of CNN models
(Section IV-D2). On the other hand, KLS localization is a
pixel-level multiclass classification problem, and the KLS of
a particular aurora type is localized as the union of pixels
belonging to this type. Thus, the KLS provides not only
morphological information but also spatial location of aurora
forms, which further improves the automatic analysis ability
compared with the existing methods. In this paper, we for-
mulate the KLS localization as the WSSS problem discussed
next.

B. Weakly Supervised Semantic Segmentation Methods

WSSS aims to classify every pixel into predefined classes
using weak annotations, such as image-level labels in this
paper. Zhou et al. [21] proposed a class activation map (CAM)
technique for joint classification and discriminative localiza-
tion by training a classification model. However, the CAM has
a low resolution and only localizes the most discriminative
parts instead of complete objects. Recently, Kwak et al. [22]
developed a classification model, named superpixel pooling
network (SPN), for WSSS task. In the SPN, the resulting
superpixel-pooled CAM (SP-CAM) can localize the local
regions to each class, which has shown a better performance
than the CAM. In addition, some WSSS methods [17]–[19]
first find the corresponding local semantic regions to each
image-level label and then train an FCN. Unfortunately, these
methods cannot directly apply to the aurora data with only
image-level labels due to the unique morphological character-
istics of aurora.

III. METHOD

A. Overview of the Proposed Method

Given the ASI training images with only image-level anno-
tations, the objective of this paper is to achieve the joint

pixel-level KLS localization and image-level classification of
aurora images. The proposed WSSS method consists of two
main modules: a PSM and a RSM for analyzing small-scale
structures and complex overall arrangements, respectively. The
pipeline of the training and testing stage is shown in Fig. 2.
The training stage contains three components: training PSM,
semantic region selection, and training RSM. Specifically,
the PSM is trained to identify the type-specific patches using
the fixed-size patches densely detected from the training set
with image-level labels. Based on the PSM, the semantic
region selection component then selects the type-specific local
regions of the training images. Finally, the RSM is trained
with the selected semantic regions to coarsely localize the
KLS using bounding boxes. At the testing stage, the RSM first
outputs the coarse KLS location of each type and the aurora
image type is predicted based on the KLSs. Then, given the
predicted label, the PSM further refines the KLS location in a
pixel level.

In Sections III-B–III-E, we detail each component of the
proposed method.

B. Patch-Scale Model

In this section, we design a PSM1 to estimate whether
a small-scale structure is specific to a given aurora type.
Specifically, we assume that the small-scale structures provide
some morphological information as shown in Fig. 1, while
it is hard to classify a patch into a definite aurora type due
to the existence of common small-scale structures in different
types of aurora images. Instead, assuming that the image type
is known, we can determine whether a patch within the image
is specific to the given type, which is known as the top–down
processing [23]. However, the premise is that we have the
knowledge of what kinds of small-scale structures are specific
for each type and what are common between one type and
other types.

To discover the specificity of small-scale structures, we con-
struct a bag of semantic visual words (SVWs) for each aurora
type, and all types of SVWs form the semantic codebook.
The diagram of the semantic codebook construction is shown
in Fig. 3. First, small patches are detected. We extract patches

1The patch scale is based on the BoVW method. To better understand the
PSM, please refer [37] for more details about the BoVW method.
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Fig. 3. Diagram of the semantic codebook construction. For a particular aurora type (e.g., arc in this figure), a bag of SVWs is constructed as follows.
In step 1, small patches are generated through uniform grid and the yellow boxes on ASI images represent some of the generated patches. In step 2, all
patches are mapped to feature space by an LFD. In step 3, clustering method is used to calculate the visual words. Steps 1–3 are carried out separately for
the given type and the rest types of training images. In step 4, the obtained two BoVW are merged into one bag of SVWs by the proposed WA method.
All types of SVWs [arc (A), drapery (D), radial (R), and HS (HS)] are obtained by conducting the above process for each type repeatedly (shown as dashed
arrows), and they together form the final semantic codebook.

of size S × S evenly by a step of 10 pixels in each training
image. Second, the patches are represented by some kinds
of local feature descriptor (LFD) which is a key step in
constructing a BoVW model. Third, a clustering algorithm
is used to generate the visual words; hereafter, the simple
k-means method is used. In our approach, two BoVWs are
generated for each aurora type: one is from the given type
images and the other from the rest types. Finally, we propose
a word analysis (WA) method to merge the two bags of each
type into one bag of SVWs which contains three categories:
specific, common, and rest. The basic idea is that the common
words are very “close” ones from the two bags and the specific
and rest words are relative “far” ones from the given type and
rest types of visual words, respectively.

The PSM can be formally described as follows. We denote
the two BoVWs of type t by Wt and Wrt . The visual words
Wt = {wt

1, . . . , w
t
Vt

} are generated from the images of type
t , and Wrt = {wrt

1 , . . . , w
rt
Vrt

} are generated from the rest
types (all predefined types, excluding type t) images, and Vt

and Vrt are the word numbers. Then, the interdistance matrix
Dtr = {dtr

i j }Vt×Vrt
and intradistance matrices Dtt = {dtt

i j }Vt×Vt

and Drr = {drr
i j }Vrt ×Vrt

are calculated using the Euclidean
distance, where dtr

i j denotes the distance between word vectors
wt

i and w
rt
j , and dtt

i j and drr
i j have the similar form. A closeness

measurement is defined as

αcloseness = max(min_L(Dtt ), min_L(Drr )) (1)

where min_L is to find the Lth minimum item in the intra-
matrix except for the diagonals.

In order to merge the two BoVWs Wt and Wrt , all the
words are categorized using the following rule. If drt

i j <

αcloseness, then wt
i and wrt

j are categorized as the common
words. If drt

i j ≥ αcloseness, then wt
i and w

rt
j are labeled the

specific and rest words for type t , respectively. The visual
words Wt and Wrt and their category labels Ct = {ct

1, . . . , ct
Vt

},
Crt = {crt

1 , . . . , crt
V r

t
}(ct , crt ∈ {speci f ic, common, rest})

Fig. 4. Example of KLSs localized by the PSM. (a) Radial-type aurora
image. (b)–(d) Heat maps of specific, rest, and common to the given image,
respectively. The heat maps are generated by estimating ps

o, pc
o, and pre

o of
each sliding patch with a step size of 5 pixels and k = 19 in kNN. (e)–(f) Heat
maps generated using a superpixel as the layout, and the probability of each
superpixel is estimated by (3).

together form the SVWs of type t . All types of the SVWs
construct the semantic codebook.

Based on the semantic codebook, the probability distribution
of a small patch o with type t over specific, common, and
rest category, denoted as ps

o, pc
o, and pre

o , respectively, can be
estimated by a kNN density estimator [38]. For example, given
a radial-type aurora image as shown in Fig. 4(a), the SVWs
of the radial type is selected to estimate ps

o, pc
o, and pre

o using
the kNN density estimator and generate the corresponding
specific, common, and rest heat maps to the radial-type image
[Fig. 4(b)–(d)]. Fig. 4 shows that the PSM can distinguish the
subtle difference of small-scale structures. However, by esti-
mating each sliding patch independently without considering
its context, the generated heat maps [Fig. 4(b)–(d)] contain
many noisy points. To solve this problem, we further use the
superpixel as the basic layout, in which all patches are assigned
to the same category. The probability of each superpixel is
computed by (3) (see Section III-D). Thereafter, the noisy
points are effectively removed, as shown in Fig. 4(e)–(g).
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Fig. 5. Semantic region selection and RSM training. (a) Training image with a type label is (b) oversegmented to get superpixels. Superpixels are processed
by the PSM to find (c) specific regions and (d) common regions. (e) and (f) Specific and common regions are rotated, respectively, to reduce the coupling
between different categories in a bounding box. (g) and (h) Different sizes of semantic regions and the corresponding bounding boxes are generated by the
hierarchical integration. (i) All the selected semantic regions and their type labels are used to train the RSM.

By this time, the PSM construction is finished. Then,
the PSM is applied to select the semantic region and refine
KLS which are described in Sections III-D and III-E.

C. Region-Scale Model

Most of the recent WSSS models use the FCN for semantic
segmentation. However, the high performance of the FCN
depends on a vast amount of accurate pixel-level annotations,
which is absent in the WSSS setting. Although many methods
are proposed to compensate for this missing information, it is
hard to obtain results as accurate as the human annotations.
However, the coarse location (bounding box region) is much
easier to obtain and can be easily localized by the bottom–up
deep detection model. Therefore, in this paper, we decompose
the KLS localization of an aurora image into two procedures.
First, an RSM is developed to localize each type of KLSs
coarsely using bounding boxes. Then, the final pixel-level
KLSs are obtained by refining the coarse KLSs with the PSM
presented in Section III-B.

The RSM is a modified version of fast region-based CNN
(Fast R-CNN) for object detection [39]. The region of interest
layer in the Fast R-CNN represents a different size of regions
with a fixed-dimension vector, and thus, it can avoid the
requirement of the fixed-size input regions. This property
is exactly fit for the multiple sizes of an FOV analysis of
aurora images, since the resized region will probably change
its original morphological type.

The RSM takes as input an entire aurora image and a
set of semantic regions generated by the selective search
method [40], and outputs a discrete probability distribution
p = (p0, . . . , pT ) over T + 1 (+1 for the common) types
for each region. The original loss function in the Fast R-CNN
consists of two components: a classification loss and an object

bounding box regression loss. However, the RSM does not
need output the object bounding boxes, and thus, the loss
function of the RSM is modified as the log loss of the true
type t

L(p, t) = − log pt . (2)

More details can be obtained in [39].

D. Semantic Region Selection

In order to train the RSM, different sizes of specific and
common regions of each type are selected by the PSM based
on the selective search method [40]. The procedure of the
semantic region selection is shown in Fig. 5. For a train-
ing image I with a label t , the graph-based segmentation
method [41] oversegments the image into a set of superpixels
I = {r1, . . . , rM }, where M is the number of superpixels.

The category of a superpixel can be determined by its inter-
nal patches, because the patches in the same superpixel have
a similar appearance and are discriminable among different
categories (speci f ic, common, and rest) in the top–down
processing. Thus, the fixed-size patches are randomly sampled
within each superpixel, rm = {ok

m}, k = 1, . . . , Km , where om

is a fixed-size image patch and Km is the number of patches
set as 10% of the number of region pixels. The probability
of superpixel rm belonging to each category is defined as the
average probability of its internal patches

Ps
rm

= 1

Km

Km∑

k=1

ps
ok

m
. (3)

Pc
rm

and Pre
rm

have the similar form and meaning. The specific
regions satisfying Ps

rm
> max{Pc

rm
, Pre

rm
} are assigned a label t ,

and the common regions (Pc
rm

> max{Ps
rm

, Pre
rm

}) are regarded
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Fig. 6. Joint classification and KLS localization. Inference includes two procedures. (Bottom–up) Given (a) test image, (b) region proposal method generates
a set of bounding boxes. (c) RSM calculates the coarse heat maps of each aurora type. (d) Based on these heat maps, the image type and coarse KLS location
are predicted by the argMax operation. (Top–down) Set of superpixels of the image are obtained by (e) oversegmentation method. (f) Superpixel containing
aurora structures are detected and processed by (g) PSM to calculate the pixel-level heat map conditioned by the predicted type. (h) Localization mask is
obtained using the proposed merging strategy.

as background since we find that most of them do not contain
typical aurora structures.

In order to reduce the coupling among different categories in
a bounding box, we rotate the image according to the principle
direction using the principal component analysis method so
that its horizontal direction is at the maximum variance axis
of the specific and common regions. To capture multiple
sizes of FOV, we hierarchically integrate the regions with a
similar appearance (measurements are the same as in [40]) for
each category until all regions have been integrated into one.
Finally, the bounding boxes fitting all sizes of semantic regions
with the assigned labels are used as the training samples.
In this process, many redundant bounding boxes may be
generated. To reduce the redundancy, we repeatedly keep the
biggest bounding box first and remove the boxes overlapped
with the biggest one more than 90%.

Although some superpixels may be assigned with false
categories, they can hardly affect the training of RSM. This is
because the small boxes (e.g., the size is less than 10 000 pix-
els, as discussed in Section IV-D1) that contain the isolated
noisy superpixels will not be included in the RSM training
data [see Fig. 5(g)]. In addition, the effect of small noisy
superpixels can be ignored with respect to the relative large
training boxes, in which most of structures are consistent with
the assigned labels. It is one of the main reasons that RSM has
a superior performance over weak image-level annotations.

E. Aurora Image Classification and KLS Localization

The proposed framework of the joint KLS localization and
aurora image classification is shown in Fig. 6. There exist
two procedures. The first procedure performs the coarse KLS
localization and image classification in a bottom–up manner.
Given an entire ASI image as an input, a set of regions are
generated by the selective search method [40] and forwarded
to the RSM to calculate the corresponding scores of T + 1
types. Then, these scoring semantic regions are merged into
T + 1 coarse heat maps {ht } in which the probability of each
pixel is calculated by averaging the scores (≥0.8) of all the

bounding boxes containing the pixel. The predicted type l of
the whole aurora image is decided by the coarse heat map
with a maximum area

l = arg max
t

{area(ht > 0.8)}. (4)

The coarse heat map hl can be used to coarsely localize the
KLS of the predicted image type l.

The second procedure is to refine the KLS in a pixel level,
given the predicted type l and coarse heat-map hl . First,
the input image is oversegmented to obtain a set of superpixels.
Then, a region detection (RD) method is conducted to detect
regions containing aurora structures before further processing,
as motivated by [11] and [13]. The basic idea is that the
dark superpixels with the mean intensity lower than a certain
threshold of dark region should be filtered out, because they
do not contain KLS. As the size of bright region increases,
the intensity threshold of the dark region should be increased
to eliminate artifacts generated by large bright regions. Thus,
the threshold is adaptively set by a bounded linear function

th = min(25 + 0.05S180, 80) (5)

where S180 is the number of pixels with the value greater
than 180 in the aurora image (the image pixel value is from
0 to 255). S180 represents the size of bright region, and
25 and 80 represent the minimum and maximum values of
the dark region threshold. These values were set empirically
by analyzing the ASI image histograms motivated by [13].
Afterward, given the predicted image type, the PSM generates
a fine-grained heat map by identifying the specific regions.
Finally, the fine-grained and the coarse heat map are averaged
and thresholded to suppress the false positives generated by
PSM. The KLS is determined as the pixels with the average
heat-map values larger than 0.5.

IV. EXPERIMENTS

A. Aurora Image Data

The aurora data used in this paper were observed by the ASI
system installed in the Chinese Arctic Yellow River Station
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Fig. 7. KLS localization results of a radial-type aurora image by various WSSS methods.

(YRS), Ny-Ålesund, Svalbard. YRS is located on geographic
coordinates 78.92◦ N, 11.93◦ E. Three ASIs were installed
in the optical system to measure the multiple wavelengths of
photoemissions at 427.8, 557.7, and 630.0 nm since Decem-
ber 2003 [2]. The optical instruments at YRS can provide
24-h surveys of aurora emissions with a temporal resolution
of 10 s in the winter season from October to March of the
following year. In this paper, we concentrate on the dayside
(03∼15 UT/06∼18 magnetic local time) aurora at 557.7 nm
from December 2003 to February 2009 the same as in [10].
To better focus on the study of aurora classification and
KLS localization algorithm, the images that do not contain
aurora structures or are captured under bad weather conditions
(e.g., aurora structures are severely covered by clouds or con-
taining the moonlight) are eliminated by the human visual
inspection. In a practical automatic aurora image analysis
system, the human preprocessing can be replaced by the aurora
detection methods, such as [11], which can be regarded as a
front-end processor.

The same as in the previous works [2], [10], all ASI aurora
images have been preprocessed before human visual inspection
and automatic algorithms as follows.

1) Subtracting Dark Current and Rescaling: Dark current
is deemed as system noise caused by equipment. It is
removed from images before further operation. Every
image is then stretched with a cutoff value of 4000 and
rescaled from 16 to 8 bits. The advantage of using image
stretching is that the relative intensities of the pixels
are preserved, while the image contrast is enhanced.
After stretching, the images are more easily categorized
and labeled by human visual inspection in the following
studies.

2) Masking and Cropping: A circle mask with a radius
of 220 pixels is applied to cut off the outer regions
where a significant wide-angle distortion happens and
may contain YRS lights. Then, the original image size
of 512 × 512 is cropped to 440 × 440 pixels.

In this paper, we assume that there are four types of aurora2:
arc (A), drapery (D), radial (R), and HS. Based on the previous
image-level annotated data for classification [10], we manually
construct several data sets according to the image observation
time to train and evaluate the proposed WSSS model.

SetG38K contains 38 044 images with the image-level anno-
tations from December 2003 to January 2004 the same as
in [10], which is used to pretrain the RSM.

SetG2K contains 2000 images in which each type has a
balanced number of 500 images selected from SetG38K. In this

2In this paper, the proposed algorithm can only recognize the four types of
aurora: arc, drapery, radial, and HS. In addition, it can be extended to analyze
other types of aurora by constructing the corresponding data sets.

data set, each image only includes a single typical type of
aurora, which is used to mine the knowledge of semantic
codebook and fine-tune the RSM.

SetGcls2K contains 2000 images with the image-level
annotations in which each type has a balanced number
of 500 images selected from December 2004 to January 2009.
It is used to evaluate the classification accuracy of our
proposed WSSS method.

SetGseg200 contains 200 images with the pixel-level anno-
tations selected from SetGcls2K, which is mainly used to
evaluate the segmentation effectiveness of the proposed WSSS
method.

B. Implementation Details

Motivated by previous works [6], [10], [11], [13], we eval-
uate LBP [31], SIFT [42], and intensity histogram local
descriptors for describing small patches when training PSM.
As suggested in [31], the “uniform” LBP incorporated by
different spatial resolutions and different angular resolutions
[(P = 8, R = 1), (P = 16, R = 2), and (P = 24, R = 3)]
is used. The intensity histogram is divided into 64 bins for
the 8-bit gray-scale aurora image. We take k = 1 of k-NN
estimator for efficiency in this paper, since we find that k
has a little impact on the final results. This phenomenon can
be explained by (3) in which the probability of a superpixel
has already considered as many SVWs as the number of the
internal patches even for k = 1.

We use the VGG_CNN_M_1024 net [43] as the base net-
work, which is pretrained for classification on the SetG38K.
Then, the RSM is fine-tuned from the pretrained network on
SetG2K. During the fine-tuning, we keep the weights in the
first layer freezing and tune all other layers. The network
is trained by backpropagation and stochastic gradient decent.
Each mini-batch consists of 64 semantic regions, including
10 background regions and 54 predefined types of regions
randomly. We use an initial learning rate of 0.005 and decrease
it by a factor of 0.1 every 2000 iterations. We use a momentum
of 0.9 and a weight decay of 0.0005. Our method is imple-
mented with Caffe [44].

C. Existing WSSS Methods for Comparison

We compare the proposed method with two state-of-the-art
WSSS methods [21], [22] for the joint localization of KLS and
classification of aurora images. Since many WSSS methods
directly find the local regions related to the image-level labels
and then use these local regions as pixel-level supervision to
train the segmentation model, for the purpose of comparison,
we also train an FCN using the regions selected by the PSM
for semantic segmentation of aurora images.
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Fig. 8. Examples of classification and KLS localization for arc (red box), drapery (green box), radial (blue box), and HS (yellow box) aurora. In each
box, each row presents (Left to right) the original image, original image covered by predicted mask, predicted mask, and human labeled mask, respectively.
Different rows present different examples.

1) Class Activation Mapping: The CAM method was intro-
duced in [21]. It performs global average pooling on the
convolutional feature maps and use those as features for a fully

connected layer to produce the desired output (categories).
When training the classification architecture, only image-
level annotations are needed and the trained model is used
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to classify aurora images. Given this simple connectivity
structure, the CAMs representing the importance of image
regions can be generated by projecting back the weights of
the output layer onto the convolutional feature maps. Simply
upsampling the CAMs to the size of the input image, the image
regions most relevant to the particular category are identified.
Nevertheless, the resolution of this localization method is low
and it only localizes the most discriminative parts instead
of the complete structures, as demonstrated by the example
shown in Fig. 7. To solve this problem, we oversegment
the aurora image into a set of superpixels, as described in
Section III-D. Then, the RD method (Section III-E) is used to
detect the aurora regions. For propagating the identified most
discriminative parts to complete regions, the detected regions
containing at least one point with its corresponding score in
the CAM larger than 0.5 are defined as the final localized
KLS. The modified CAM method is denoted as CAM+.

2) Superpixel Pooling Network: The SPN was proposed
in [22]. The SPN takes two inputs for inference: an image
and its superpixel map. Given an input image, the network
extracts high-resolution feature maps using a CNN encoder
followed by several upsampling layers, and the superpixel
pooling layer aggregates features inside each superpixel by
exploiting an input superpixel map as the pooling layout. The
aggregated features are forwarded to fully connected layer
to output classes. An additional branch of global average
pooling is added for regularization, which prevents undesirable
training noises introduced by superpixels. The trained SPN
can be directly applied to classify aurora images. To achieve
semantic segmentation, the feature vector to each superpixel is
generated through the superpixel pooling layer and fed to the
fully connected classification layer to output the class scores
of each superpixel. As a result, the activation map for the
associated class is obtained, which is called the SP-CAM.
The segmentation mask is set as the superpixels with the
score larger than 50% of the maximum of SP-CAM. This is
equivalent to that the score map values are first normalized into
[0, 1] by the maximum for the probabilistic interpretation and
the segmentation mask is the union of pixels with probability
larger than 0.5. We further improve the segmentation results
for aurora images by filtering out superpixels not containing
aurora using the RD method. The modified SPN method is
denoted as SPN+.

3) PSM + FCN for KLS Localization: We evaluate another
WSSS strategy for semantic segmentation of aurora images
that is training a bottom–up FCN model [16] using the selected
semantic regions by the proposed PSM. It should be noted
that the selected semantic regions for training FCN do not fit
bounding boxes as for training the RSM. Given an image of
type t , the trained FCN directly generates T + 1 types of heat
maps. The final segmentation mask is set as the pixels in the
heat map of type t whose value is greater than that of pixels
in all other heat maps. The segmentation results can also be
improved by the RD method.

D. Classification

1) Parameter Analysis: One of the key strategies in our
proposed WSSS framework is analyzing aurora images from

TABLE I

RSM CLASSIFICATION ACCURACY FROM DIFFERENT SIZES OF FOV

multiple sizes of FOV. Larger regions observe more complete
aurora forms but have weak fine-grained localization ability,
while smaller regions emphasize more details but cannot
provide distinct semantics of predefined morphological types.
To explore the effect of FOV, we train and test RSM for
classification using a different size range of regions (in pixels),
from 10 000 (about 1/20 of the image size) to 48 400 (half
image size) denoted by S, from 48 400 to 193 600 (full image
size) denoted by L, and from 10 000 to 193 600 denoted
by F, where the image size is 440 × 440. The RSM is
pretrained on data set SetG38K, fine-tuned on SetG2K, and
tested on SetGcls2K. We use an LBP descriptor, a patch
size of 16 × 16, and the words number of 500 to construct
the semantic codebook for semantic region selection. Table I
shows the classification accuracy of each aurora type and its
mean value by RSM trained and tested on a different size
range of regions. The RSM trained on F and tested with
S has the best classification results. This means that a half
size of the image is sufficient to distinguish different aurora
morphologies. In addition, there is an interesting phenomenon
that a large size of FOV has strong discriminability for arc-
type and radial-type auroras but weak for drapery-type and
HS-type auroras. Actually, the phenomenon coincides with the
facts that the arc-type and radial-type auroras usually cover a
very large size of FOV, while the drapery-type and HS-type
auroras are mainly distinguished by KLS, as shown in Fig. 8.

2) Compared With Existing Methods: In order to demon-
strate the effectiveness of multiple sizes of FOV, we compare
the proposed RSM with a traditional CNN classifier which
is trained and tested directly using the whole image under
the same settings. Table II shows the classification results of
the traditional CNN classifier. The best RSM classification
accuracy is 5.5% higher than the traditional CNN classi-
fier on SetGcls2K. It is noted that the main deficiency of
the traditional CNN is the relative low discriminability of
the drapery-type and the HS-type aurora compared with the
RSM. We interpret this result to the classification mechanism
that these aurora morphologies are regarded as the subcate-
gories of patchy aurora [13]. Just as our proposed method,
the subcategories need KLS for fine-grained classification.
In Table II, we also compare the RSM with the state-of-the-
art WSSS methods [21], [22] in terms of classification. Since
both CAM and SPN use global pooling which significantly
damages the details, they have weak ability to distinguish these
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TABLE II

COMPARED WITH EXISTING METHODS FOR CLASSIFICATION

Fig. 9. Segmentation results over different patch sizes. In the legends, His,
LBP, and SIFT denote the local patch descriptors and the numbers represent
the numbers of visual words.

TABLE III

SEGMENTATION ACCURACY FOR DIFFERENT

COMPONENTS IN TERMS OF IOU

Fig. 10. Segmentation results for different values of L with 100 word
numbers.

subcategories. In addition, the proposed method has weak
discriminability for radial-type aurora compared with other
types due to two aspects. First, we select the RSM trained on
F and tested with S as the best classification model in terms
of the mean accuracy while testing with S will hurt the radial-
type classification accuracy as discussed in Section IV-D1.
Second, the radial-type aurora structures are usually contained
in all other types, so that it is easy to confuse the radial-type
aurora with other types.

Fig. 11. Segmentation results for different values of L with 200 word
numbers.

Fig. 12. Segmentation results for different values of L with 500 word
numbers.

E. KLS Localization

1) Parameter Analysis: In this section, we evaluate the
effectiveness of the KLS localization in terms of intersection
over union (IoU) on the challenging data set SetGseg200. First,
we analyze the effects of a local patch descriptor, a patch size,
and a word number on the mean IoU. The results are shown
in Fig. 9. Using the patch size of 16 × 16 and 32 × 32 can
achieve the best segmentation accuracy for LBP and SIFT,
respectively, both on the 100 visual words. The number of
visual words is more important for the intensity histogram
feature. More visual words will have a better segmentation
result, but they also require more computation and memory
costs. Therefore, we select the LBP descriptor, a patch size of
16 × 16, and 100 visual words as the optimal parameters for
further analysis.

2) Ablation Experiments on Region Detection and Merging
Strategies: To investigate the importance of RD and merging
strategies, we conduct four KLS localization experiments by
using different combinations of components: RD-only, PSM-
only, RD and PSM (PSM + RD), and RD and PSM followed
by merging strategy (PSM + RD + Merge). The results are
shown in Table III. RD is actually an adaptive thresholding
segmentation method constrained by superpixels. Despite the
simplicity, the RD-only achieves good segmentation results.
The PSM-only has a better accuracy than the RD-only.
By combining both RD capturing the intensity feature and
PSM capturing the texture feature, the segmentation accuracy
is significantly improved. The merging strategy has very little
improvement (0.2%) in segmentation results, since we mainly
focus on ASI images containing a single type of aurora. The
merging strategy is necessary in the multilabel classification
problem.

3) “Keyness” of KLS: In fact, the key local structure is
vaguely defined, especially for HS type of aurora whose
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Fig. 13. Segmentation results of different values of L. (Left to right) Original image, KLS of L=1, 300, 500, 700, and labeled mask, respectively, with
100 words.

Fig. 14. Failed examples under nonideal conditions. (a) Classification
error: radial aurora is wrongly classified as a drapery type. (b) Segmentation
error: clouds are wrongly localized as radial KLSs.

morphologies are very complex and usually consist of irregular
bright patch and rays. The problem is that a ray structure is
also the main characteristic of drapery aurora and radial aurora.
In our proposed method, the parameter L in the WA method
(Section III-B) can control the “keyness” of KLS. We test a
different value of L for segmentation on a different size of
semantic codebook using the LBP descriptor. The results are
shown in Figs. 10–12. With the increase in the L value, only
the segmentation accuracy curve of the HS type aurora first
rises and then drops, while others directly decline. According
to (1), with the increase in the L value, the closeness measure-
ment α will increase and the algorithm will keep more-specific
structures. Particularly, L to be 0 means that the closeness
measurement α is set as the minimum of intradistance matrix
introduced in Section III-B. Thus, we can infer that the HS
aurora has more common structures with other types. Fig. 13
shows an example for visual inspection about the relation
between the “keyness” and L. It is noted that the value of
L depends on the test data set, so L is set to 0 for each type
of aurora to give a fair comparison with other methods and the
value of L can be changed accordingly for future applications.

4) Compared With Existing Methods: In this section,
the KLS localization effectiveness of the proposed method
is evaluated qualitatively and quantitatively based on aurora
experts labeled masks. It is noted that the labeled masks
are not used for training the proposed model, while they
are the ground truth for evaluating the KLS localization
performance of automatic methods. In Fig. 7, an example
image is presented for visual comparison of the proposed
method with other WSSS methods. More KLS localization
examples by the proposed method are presented in Fig. 8.
Trained with only image-level labels, the proposed method
can jointly classify the aurora image and localize the KLS
in a pixel level with satisfying results. As shown in Fig. 8,
the proposed method cannot only localize various types of
arc (A1–A5) and irregular patch structures (H1–H5) but also

various ray structures (D1–D5 and R1–R5). Even with the
unlabeled structure interference, the proposed method can still
localize the KLS. For instance, the example A2 is partially
covered by cloud and the proposed method only localizes
the key arc structures and ignores the cloud, which agrees
with the human understanding. The drapery-type aurora image
often includes diffuse aurora as shown in D2, D3, and D4.
The proposed method can still localize the key draperylike
structures and is not affected too much by the diffuse structure.

To make a comprehensive evaluation, we also show two
typical failed examples from the proposed algorithm under
nonideal conditions that the aurora structures are severely
covered by clouds (see Fig. 14). These ASI images are not con-
tained in our interesting data sets. In addition, the errors caused
by nonideal conditions can be mitigated by the front-end
processing of aurora detection manually or automatically [11].

The proposed method was quantitatively evaluated on data
set SetGseg200. The results presented in Table IV indicate
that our method achieves the best semantic segmentation per-
formance for each type of aurora images. The main deficiency
of the existing methods is mainly caused by drapery and
radial images which consist of similar transparent rays with a
varying brightness and similar appearance as shown in Fig. 8.
By directly using the bottom–up processing for semantic
segmentation of aurora images, the existing methods have
great difficulties to segment the detail structures. We believe
that the superiority of the proposed method is resulted from
the combination of both bottom–up and top–down processing.

F. Runtime

Since the training stage is performed offline, users are
more concerned about the runtime in the testing stage. The
runtime3 of the proposed method as well as the compared
methods for the classification and KLS localization of a
440 × 440 ASI aurora image is reported in Tables II and IV.
The proposed method needs about 1.2 s for classification and
about 1.7 s to localize the KLS. The process of generat-
ing multisize FOV is the most time-consuming component
(about 1.1 s), so that the proposed method takes more time
than the existing methods, especially for the classification task.
However, it can still achieve the “nowcasting” application for a
10-s imaging cadence now. For the community to make use of
the discoveries and further research, the source code is released
at https://github.com/niuchuangnn/Aurora-ASI-KLS.

3The reported runtime is tested on a generic PC (Intel i7 CPU, 8 GB
memory) with an NVIDIA GeForce GTX 750Ti.
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TABLE IV

SEGMENTATION ACCURACY COMPARISON WITH THE EXISTING METHODS IN TERMS OF IOU

G. Discussion

From both the quantitative and qualitative results, we can
see that proposed WSSS method performs better than the state-
of-the-art methods for joint KLS localization and aurora image
classification. The improvement is due to two aspects: bottom–
up analysis of an aurora image from multiple sizes of FOV
and top–down localization of the KLS using the specificity of
small-scale structures. By combining a large size of FOV that
captures the overall arrangements and a small size of FOV that
emphasizes the local structure, the classification accuracy has
been significantly improved, especially for the subcategories.
Using the obtained image type and the specificity of small-
scale structures, the top–down processing can distinguish the
subtle differences among different type of aurora rays. How-
ever, the proposed method has several drawbacks: 1) the hand-
crafted local descriptors may be suboptimal for describing the
small patches and 2) the training of the PSM for more types
of aurora by clustering algorithm will be a time-consuming
process. How to integrate the learning processes of small-scale
structure specificity and high-level features into one end-to-end
network is a problem needed to be solved in the feature.

V. CONCLUSION

This paper proposed a WSSS method for joint KLS localiza-
tion and aurora image classification using image-level annota-
tions only. By analyzing the aurora images from multiple sizes
of FOVs with the deep convolutional network, the designed
RSM has significantly improved the classification accuracy.
To accurately localize the KLS of aurora images in the
pixel level, a from-coarse-to-fine procedure was developed by
combining both the RSM and the PSM. Extensive experiments
were conducted on the experts’ labeled data sets, and the
results have demonstrated that the proposed method achieves
higher accuracy in terms of both classification and segmenta-
tion for aurora images compared with other methods.

In the future, we will solve the time-consuming problem
by integrating the PSM and the RSM into one end-to-end
deep network. In addition, both better overall appearance
representation and local detail representation methods will
be taken into account to further improve the classification
and key local structure localization performance. Since the
local structure analysis has recently attracted attention in
aurora research, e.g., throat aurora [45], we will apply our
proposed joint classification and KLS localization framework
for analyzing more types of local structures automatically.
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